
www.manaraa.com

Performance Evaluation of Contiguous and Noncontiguous

Processor Allocation Strategies based on Common Communication

Patterns for 2D Mesh Multicomputers

نائي األبعاد في ث تقييم أداء استراتيجيات التخصيص المتجاور وغير المتجاور بناء على أنماط االتصال المعروفة في النظام

 متعددات الحواسيب

By

Areen Falah Ahmad Alabass

Supervisor

Prof. Ismail Ababneh

Co-Supervisor

Prof. Saad Bani-Mohammad

This Thesis was Submitted in Partial Fulfillment of the Requirements for the Master’s

Degree of Science in Computer Science

Deanship of Graduate Studies

Al al-Bayt University

1, 2019

www.manaraa.com

II

Examination Committee

Examination committee Signature

Prof. Ismail Ababneh (Supervisor) …………………………

Prof. Saad Bani-Mohammad (Co-Supervisor) …………………………

Prof. Omar Shatnawi …………………………

Prof. Khaled Batiha …………………………

Dr. Wail Mardini …………………………

www.manaraa.com

III

Dedication

This thesis is dedicated to my parents, my Daughter, Prof. Ismail Ababneh, and Prof.

Saad Bani-Mohammad for their courtliness, appreciating to support and

encouragement.

www.manaraa.com

IV

Acknowledgments

This thesis was supervised by Prof. Ismail Ababneh and Prof. Saad Bani-Mohammed,

who have spent a lot of time helping me to write the thesis. My great thanks for them to

help me in choosing the main idea of the thesis, obtaining the results, writing the thesis

and their encouragement to complete this thesis perfectly.

Also, my great thanks to my parents, my brothers, and my sisters, without their

encouragements and support I could not do anything.

Areen Alabass

www.manaraa.com

V

List of Content

Examination Committee ... II

Dedication .. III

Acknowledgments .. IV

List of Content ... V

List of Figures ... VI

List of Tables .. IX

List of Abbreviations ... X

Abstract .. XI

Chapter One 1. Introduction ... 1

1.1 Processor Allocation ... 3

1.2 Motivation and Contribution .. 7

1.3 Structure for the Thesis .. 11

Chapter Two Background and Preliminaries .. 12

2.1 Related Allocation strategies .. 12

2.2 Switching Method ... 23

2.3 Assumptions .. 31

Chapter Three Simulation Tool and Simulation Results ... 33

3.1 Simulation Tool (ProcSimity Simulator) .. 33

3.2 Simulation Results ... 35

3.3 System Utilization ... 58

Chapter Four Conclusion and Directions for future work ... 61

4.1 Conclusion ... 61

4.2 Directions for the Future Works ... 63

References .. 64

 72 .. الملخَّص

Appendix ... 74

www.manaraa.com

VI

List of Figures

Figure 1.1: An example of a 4×42D mesh.

Figure 1.2: An example of internal and external fragmentation.

Figure 2.1: An allocation using the 2D Buddy strategy.

Figure 2.2: An allocation using the frame sliding strategy.

Figure 2.3: An allocation using First Fit and Best Fit strategies.

Figure 2.4: Paging(0) using different indexing schemes.

Figure 2.5: An allocation using Paging Row_major (0) strategy.

Figure 2.6: An allocation using MBS allocation strategy.

Figure 2.7: An example of allocation using GABL allocation strategy.

Figure 2.8: Dimension-ordered (XY) routing in an × 2D mesh-connected network.

Figure 3.1: Average turnaround time vs. system load for the near neighbor

communication pattern and uniform side lengths distribution in a × mesh.

Figure 3.2: Average turnaround time vs. system load for the near neighbor

communication pattern and uniform decreasing side lengths distribution in a

× mesh.

Figure 3.3: Average turnaround time vs. system load for the one-to-all

communication pattern and uniform side lengths distribution in a × mesh.

www.manaraa.com

VII

Figure 3.4: Average turnaround time vs. system load for the one-to-all

communication pattern uniform decreasing side lengths distribution in a ×mesh.

Figure 3.5: Average turnaround time vs. system load for the random

communication pattern and uniform side lengths distribution in a × mesh.

Figure 3.6: Average turnaround time vs. system load for the random

communication pattern and uniform decreasing side lengths distribution in a

× mesh.

Figure 3.7: Average turnaround time vs. system load for the all-to-all

communication pattern and uniform side lengths distribution in a × mesh.

Figure 3.8: Average turnaround time vs. system load for the all-to-all

communication pattern and uniform decreasing side lengths distribution in a

× mesh.

Figure 3.9: Average turnaround time vs. system load for the FFT communication

pattern and uniform side lengths distribution in a × mesh.

Figure 3.10: Average turnaround time vs. system load for the FFT communication

pattern and uniform decreasing side lengths distribution in a × mesh.

Figure 3.11: Average turnaround time vs. system load for the DQBT

communication pattern and uniform side lengths distribution in a × mesh.

Figure 3.12: Average turnaround time vs. system load for the DQBT

communication pattern and uniform decreasing side lengths distribution in a

× mesh.

Figure 3.13: Average turnaround time vs. system load for the Ring

communication pattern and uniform side lengths distribution in a × mesh.

Figure 3.14: Average turnaround time vs. system load for the Ring

communication pattern and uniform decreasing side lengths distribution in a

× mesh.

www.manaraa.com

VIII

Figure 3.15: Average turnaround time vs. system load for the All-to-One

communication pattern and uniform decreasing side lengths distribution in a

× mesh.

Figure 3.16: Average turnaround time vs. system load for the All-to-One

communication pattern and uniform decreasing side lengths distribution in a

× mesh.

Figure 3.17: System utilization of the contiguous and noncontiguous allocation

strategies (FF, BF, GABL, MBS, and Paging(0)), for the eight communication

patterns tested, and uniform side lengths distribution in a × mesh.

Figure 3.18: System utilization of the contiguous and noncontiguous allocation

strategies (FF, BF, GABL, MBS, and Paging(0)), for the eight communication

patterns tested, and uniform decreasing side lengths distribution in a × mesh.

www.manaraa.com

IX

List of Tables

Table 3. 1: System Parameters that used in the Simulation Experiments.

www.manaraa.com

X

List of Abbreviations

Abbreviation Meaning

MBS Multiple Buddy Strategy

FCFS First-Come-First-Served

FF First Fit

BF Best Fit

GABL Greedy Available Busy List

FFT Fast Fourier Transform

DQBT Divide and Conquer Binomial Tree

www.manaraa.com

XI

Performance Evaluation of Contiguous and Noncontiguous

Processor Allocation Strategies based on Common Communication Patterns for

2D Mesh Multicomputers

By

Areen Alabass

Supervisor

Prof. Ismail Ababneh

Co-Supervisor

Prof. Saad Bani-Mohammad

Abstract

Several studies in processors allocation indicate that noncontiguous allocation strategies

dramatically better than contiguous allocation strategies with regard to mean system

utilization and average turnaround time, regardless the used communication pattern. But,

this is in reality not always true, the used communication pattern may have a great impact

on the performance of contiguous and noncontiguous processor allocation in multi-

computers, especially when each job does exactly one iteration of the given

communication pattern. In this thesis,

www.manaraa.com

XII

 the performance of most famous allocation strategies for 2D mesh-connected multi-

computers is re-visited considering several important communication patterns, including

the Near Neighbor, Ring, All to all, Divide and Conquer Binomial Tree (DQBT), Fast

Fourier Transform (FFT), One to All, All to One, and Random communication patterns.

The allocation strategies investigated are First Fit (FF) and Best Fit (BF) as contiguous

allocation strategies

and Paging(0), Greedy Available Busy List (GABL), and Multiple Buddy Strategy (MBS)

as noncontiguous allocation strategies. Two job size distributions have been considered

which are uniform and uniform-decreasing distributions. Wide simulation experiments

have been conducted to compare the performance of contiguous allocation with that of

the noncontiguous allocation with regard to average turnaround time and mean system

utilization using the ProcSimity simulator.

The simulation results for average turnaround time have shown that in near neighbor,

FFT and DQBT communication patterns, the performance of contiguous allocation

strategies (FF and BF) dramatically better than that of the noncontiguous allocation

strategies (Paging(0), MBS and GABL) with regard to average turnaround; except for

MBS in DQBT communication pattern. Also, the simulation results have shown that in

one-to-all, random, ring and all-to-one communication patterns, the performance of

noncontiguous allocation strategies (Paging(0), MBS and GABL) dramatically better than

that of the contiguous allocation strategies (FF and BF) with regard to average turnaround

time. For all-to-all communication pattern, the simulation results have shown that the

performance of the contiguous allocation strategies (FF and BF) is better than that of the

MBS noncontiguous allocation but the performance of GABL and Paging(0) is better than

that of FF, BF, and MBS.

The results for system utilization time have shown that in all communication patterns that

are considered in this research work, the noncontiguous allocation strategies dramatically

better than the contiguous allocation strategies with regard to mean system utilization.

www.manaraa.com

1

 Chapter One

1. Introduction

Parallel computers have been used to solve difficult problems in many areas of science

and engineering such as bioscience, genetics, and geology. This is due to concurrency,

reliability, computational power that the parallel computer provides. A parallel computer

is multiple processors that work together to solve computational problems (Foster, 1995;

Grama, et al., 2003).

Parallel computers are categorized according to memory architecture into shared memory

and distributed memory. In the shared memory architecture, also known as multi-

processors, the memory is physically shared between various processors and processors

communicate with each other via the shared memory (Grama, et al., 2003). However, in

the distributed memory architecture, also known as multicomputers, different parts of the

memory are physically associated with different processing units, and processors

communicate with each other by exchanging messages through an interconnection

network (Foster, 1995; Grama, et al., 2003).

An interconnection network provides a way for data transfer between nodes (processors).

Interconnection networks can be separated into two types: static and dynamic. In dynamic

networks, also called indirect networks, communication links are configured dynamically

by switches to form paths between nodes (i.e., processors) (Grama, et al., 2003); an

example of a dynamic network includes the bus-based network (Ferreira, et al., 1994). In

static networks, also called direct networks, there is a point-to-point communication link

(direct communication link) between nodes (i.e. processors); an example of static

networks is the mesh network (Adve and Vernon, 1994).

www.manaraa.com

2

Direct networks have been used in many large-scale multicomputers. This is due to their

scalability: scalability means that it is able to simply scaled up by adding new nodes and

channels that depend on the predefined network structure. Direct networks can also

exploit communication locality (nearest neighbor communication) exhibited by many real-

world applications (Bani-Mohammad, 2008). The mesh network is the most popular

network used in multicomputer systems. This is because of many features that the mesh

network has, such as simplicity, regularity, ease of implementation and high scalability

(Babbar and Krueger, 1994; Yoo and Das, 2002; Grama, et al., 2003). In two-dimensional

meshes, each node (except the nodes at the edges) is connected to four neighbors by

direct communication links. Matrix computations and image processing map very

naturally onto a 2D mesh. The three-dimensional mesh is a generalization of the 2D

mesh. Both 2D and 3D meshes have been adopted in many commercial and experimental

multi-computers (Foster, 1995; Grama, et al., 2003). The Delta Touchstone (Intel

Corporation, 1991) is an example of 2D mesh-connected multi-computers, and the IBM

blueGene/L (Blumrich, et al., 2003) is an example of 3D mesh-connected multi-

computers. Figure 1.1 shows an example of a 4×4 2D mesh, in which the allocated

processors are indicated by black squares and free processors are indicated by white

squares.

www.manaraa.com

3

1.1 Processor Allocation

The resource management policy is a critical issue in designing the multicomputer

operating system (OS) that supports multiple users. An efficient resource management

policy is critical to improving system performance (Yoo and Das, 2001; Yoo and Das,

2002). Processor management system mainly comprised of two components: processor

allocation and job scheduling. Processor allocation is responsible for assigning the

desired number of processors to incoming jobs and job scheduling are responsible for

deciding the order in which jobs are chosen for execution (Babbar and Krueger, 1994;

Yoo and Das, 2002; Bani-Mohammad, 2008).

Incoming job in the mesh-connected multicomputer system determines the size of the

needed sub-mesh before entering the system queue. The job scheduler chooses the next

job for execution depending on the underlying scheduling policy. The processor allocator

then tries to find free sub-mesh for the chosen job. If the processor allocator failed to find

the required sub-mesh because there are no free processors or there are already awaiting

jobs in the system, then the job joins the waiting jobs queue until an allocated job finished

its execution and released a sub-mesh. When the processor allocator finds a free sub-

mesh for the selected job then the job holds these processors in this sub-mesh until till it

completes its execution. When the execution is finished, all the allocated processors are

freed and can be used by other jobs (Chang and Mohapatra, 1998; Yoo and Das, 2002;

Bani-Mohammad, 2008).

www.manaraa.com

4

Processor allocation algorithms are responsible for finding the sub-meshes for incoming

job requests. This capability is called the sub-mesh recognition capability. A processor

allocation algorithm is considered to have a complete sub-mesh recognition capability if

it can always determine a free sub-mesh for an incoming job if one is available. Having a

complete sub-mesh recognition capability improves the performance of the system, but

instead, it could increase the complexity and the allocation overhead (Yoo and Das,

2002).

Processor allocation strategies composed of two approaches: contiguous and

noncontiguous. In contiguous allocation strategies, parallel jobs are allocated to distinct

contiguous sub-meshes of physically adjacent processors and the sub-meshes have the

same topology as the underlying multicomputer network. These strategies aim to

eliminate contention between the messages of various jobs executing on the system and

reduce inter-processor communication delays (Zhu, 1992; Yoo and Das, 2002; Ababneh,

et al., 2010). Contiguous allocation strategies can lead to high processor fragmentation

because of the contiguity condition (Lo, et al., 1997; Ababneh, et al., 2010). This

fragmentation results in degrading of the system performance with regard to job

turnaround time (i.e., the time that the job spends in the system from arrival to departure)

and mean system utilization (i.e., the percentage of processors that are utilized over a

given time) (ProcSimity User’s Manual, 1997).

There are two types of Processor fragmentation: internal and external. Internal

fragmentation happened when more processors are allocated to a job than it needs. This

because of the restricted shape of sub-meshes allocation which results in extra

processors to be allocated to a requested job and these processors are wasted and not

used. External fragmentation happened when there are free processors enough in

number to satisfy job request, but they cannot be allocated because they are not

contiguous (Zhu, 1992; Lo, et al., 1997; Chang and Mohapatra, 1998; Seo, 2005;).

www.manaraa.com

5

Figure 1.2 shows an example of internal and external fragmentation in the contiguous

allocation algorithm. Figure 1.2 (a) shows an incoming job that requests 3×2 sub-mesh of

processors, by using two dimensional buddy strategy that restrict to allocate a power of

two contiguous sub-mesh then 16 processors are allocated resulting in 0.625 (10/16)

internal fragmentation. Figure 1.2 (b) shows an incoming job that request 2×2 sub-mesh

of processors, and the algorithm fails to allocate the requested sub-mesh because the

available processors are not contiguous resulting in external fragmentation.

Examples of contiguous allocation strategies for 2D mesh-connected multicomputers

include the Two Dimensional Buddy System (2DBS)(Li and Cheng,1991), Frame Sliding

(FS) (Chuang and Tzeng, 1994) and First Fit (FF) and Best Fit (BF) (Zhu, 1992).

www.manaraa.com

6

Noncontiguous allocation strategies are suggested to reduce the fragmentation problem

that occurs in contiguous allocation strategies. In noncontiguous allocation, a job can be

allocated to multiple disjoint smaller sub-meshes instead of waiting for one sub-mesh of

the requested size and shape to be available. Lifting the contiguity condition in

noncontiguous allocation reduces processor fragmentation and increases processor

utilization but instead increases the communication overhead due to the inter-process

contention produced by messages from different jobs and long distances between the

communicating nodes (Lo, et al., 1997; Chang and Mohapatra, 1998; Bani-Mohammad,

et al., 2007). Examples of noncontiguous allocation strategies for 2D mesh-connected

multicomputers include Random (Lo, et al., 1997), Paging (Lo, et al., 1997), Multiple

Buddy Strategy (MBS) (Lo, et al., 1997).

A good processor allocation strategy is preferred to be hybrid between contiguous and

noncontiguous allocation strategies. The processor allocation strategy should be able to

divide the job while maintaining a high degree of contiguity between the allocated

processors. The processor allocation strategy is responsible for recognizing and

allocating the available sub-meshes in such way that minimizes the communication

overhead and hence improves the overall system performance (Lo, et al., 1997; Bani-

Mohammad, et al., 2007).

www.manaraa.com

7

1.2 Motivation and Contribution

Various previous studies (Zhu, 1992; Lo, et al., 1997; Ababneh, 2008, Bani-Mohammad,

et al., 2009 Ababneh, et al., 2010; Bani-Mohammad, et al., 2013) in processor allocation

indicate that noncontiguous allocation strategies dramatically better than contiguous

allocation strategies with regard to mean system utilization and average turnaround time.

This is because the noncontiguous processor allocation strategies have solved the

problem of fragmentation that exist in contiguous processor allocation strategies. In

contiguous allocation, the parallel job must have the same topology as the multicomputer

(Li and Cheng, 1991; Zhu, 1992; Lo, et al., 1997). Lifting the contiguity condition which is

done in noncontiguous allocation allows to allocate several dispersed sub-meshes to a

requested job (Mache and Lo, 1997) that results in improving the system performance

with regard to

system utilization by up to 78% for common workloads (Wan, et al., 1996; Lo, et al., 1997)

but this instead increases the message contention inside the network because messages

that come from various jobs can collide together via competing for communication links

and messages may traverse longer distances.

There are two types of contention (Min and Mutka, 1994): internal contention and external

contention. Internal contention exists when two or more routing paths for the same job try

to use a physical channel at the same time. The internal contention is an inherent property

of each job, and it can exist in both contiguous and noncontiguous allocation strategies.

External contention exists when two or more routing paths of different jobs try to use the

same physical channel at the same time. External contention exists only in the

noncontiguous allocation strategies. When using noncontiguous allocation in a system

with wormhole routing technique, the external contention increases the delay of the

communication time (Min and Mutka, 1994). Always, there is a tradeoff between the

processor utilization due to the fragmentation problem and the jobs turnaround time due

to the network contention (Min and Mutka, 1994; Moore and Lionel, 1996).

www.manaraa.com

8

Two-factor play a role in contention, the switching technology and communication pattern

between the allocated processors (Min and Mutka, 1994). The contention can be ignored

if the software latency (i.e., the latency at sender and receiver for processing the

message) is high or when the message size is small (Moore and Lionel, 1996). The

message contention between the messages of different jobs results in increasing the

communication overhead. This, in turn, increases the delay and weakness the gain of

improved system utilization that results in degrading the system performance with regard

to jobs turnaround time (Min and Mutka, 1994; Mache and Lo, 1997). To improve the

performance of the noncontiguous allocation strategies, we should choose an allocation

strategy that causes minimal message contention where the geometric location of the

allocated sub-meshes in the mesh system plays a significant role in the interference

between jobs' messages (Mache and Lo, 1997).

The existing noncontiguous allocation strategies (Lo, et al., 1997; Mache, et al., 1997;

Chang and Mohapatra, 1998; Bani-Mohammad, et al., 2007; Ababneh, 2008; Bani-

Mohammad, et al., 2012) use different techniques to determine and allocate free sub-

meshes in the mesh

system. Noncontiguous allocation strategies focus on maintaining a high degree of

contiguity among the processors in the allocated sub-meshes instead of reducing

message contention in the sub-meshes that are allocated to different jobs.

www.manaraa.com

9

Many research studies have been investigated the processor allocation in

multicomputers, especially those based on mesh network (Li and Cheng, 1991; Zhu,

1992; Chuang and Tzeng, 1994; Lo, et al, 1997; Chang and Mohapatra, 1998; Ababneh,

2001; Bani-Mohammad, et al., 2007; Ababneh, 2008; Ababneh, et al., 2010; Bani-

Mohammad, et al., 2012). But to the best of our knowledge, there is no study that

considers the effect of the Near Neighbor, Ring, All to all, Divide and Conquer Binomial

Tree (DQBT), Fast Fourier Transform (FFT), One to All, All to One, and Random

communication patterns on the performance of contiguous and noncontiguous processor

allocation in multicomputer, especially

when each job does exactly one iteration of the given communication pattern. The

communication pattern used can have a great impact on the performance of contiguous

and noncontiguous processor allocation in multicomputer (Bani-Mohammad, et al., 2013).

In this thesis, the performance of the most famous contiguous allocation strategies (First

Fit, Best Fit) and most famous noncontiguous allocation strategies (GABL, Paging, MBS)

for 2D mesh multi-computers is re-visited considering several important communication

patterns. Which are one-to-all (ProcSimity Manual, 1997), near neighbor (Bani-

Mohammad and Ababneh, 2013), random (ProcSimity Manual, 1997), all-to-all

(ProcSimity Manual, 1997; Lo, et al., 1997), ring (ProcSimity Manual, 1997; Lo, et al.,

1997), Divide and Conquer Binomial Tree (DQBT)(Lo, et al., 1996 ; Lo, et al., 1997;

Valero-Garcia, et al.,1997; Grama, et al.,2003), Fast Fourier Transform (FFT) (James W.

Cooley and John W. Tukey, 1964; Lo, et al., 1997; Grama, et al.,2003; Chan, et al., 2008),

all-to-one (Grama, et al., 2003)

www.manaraa.com

11

. Those communication patterns have been chosen because they have been used in

related works (Suzaki, et al., 1996; Mache, et al., 1997; Lo, et al., 1997; Bani-Mohammad,

et al., 2007; Ababneh, 2008; Bani-Mohammad, et al., 2012; Bani-Mohammad and

Ababneh, 2013) and because they are common, and they cover many communications

patterns used very frequently by highly parallel applications (Lo, et al., 1997). Two

distributions were considered for generation job side lengths, they are the uniform and

uniform-decreasing

distributions. Similar distributions have been used in the literature (Lo et al., 1997; Chang

and Mohapatra 1998; Chiu and Chen, 1999, Bani-Mohammad and Ababneh, 2013). Wide

simulation experiments have been conducted to compare the performance of contiguous

allocation with that of noncontiguous allocation with regard to average turnaround time

and mean system utilization using the ProcSimity simulator.

The simulation results have shown that in near neighbor, FFT and DQBT communication

patterns, the performance of contiguous allocation strategies (FF and BF) dramatically

better than all noncontiguous allocation strategies (Paging(0), MBS and GABL) with

regard to average turnaround; except for MBS in DQBT communication pattern, the

performance of MBS is very close to that of FF and BF. These results prove that the taken

fact that say that noncontiguous allocation strategies always dramatically better than

contiguous allocation strategies with regard to average turnaround time is not always true.

Also, the simulation results for average turnaround time have shown that in one-to-all,

random, ring and all-to-one communication patterns,

www.manaraa.com

11

 the performance of the noncontiguous allocation strategies (Paging(0), MBS and GABL)

dramatically better than that of the contiguous allocation strategies (FF and BF) with

regard to average turnaround time. For all-to-all communication pattern, the simulation

results have shown that the performance of contiguous allocation strategies (FF and BF)

is better than that of the MBS noncontiguous allocation but the performance of GABL and

Paging(0) is better than that of FF, BF, and MBS.

The results for system utilization have shown that in all communication patterns that are

considered in this research work, the noncontiguous allocation strategies dramatically

better than contiguous allocation strategies with regard to mean system utilization.

1.3 Structure for the Thesis

The rest of the thesis is organized as follows:

Chapter 2 explains the most famous contiguous and noncontiguous allocation strategies

that are considered in this thesis. Also, it gives some preliminaries needed for

understanding the following chapters and provides a list of assumptions used in this

thesis.

Chapter 3 this chapter explains the method of study used in this thesis and analyzes and

discusses the results of the simulation experiments and compares the performance of

contiguous and noncontiguous allocation strategies.

Chapter 4 summarizes the major results obtained in this thesis and outline possible

directions to continue this work in the future.

www.manaraa.com

12

Chapter Two

Background and Preliminaries

The main aim of this chapter is to explain some of the most famous contiguous and

noncontiguous allocation strategies that have been suggested in the literature (Li and

Cheng, 1991; Zhu, 1992; Chuang and Tzeng, 1994; Lo, et al, 1997; Bani-Mohammad, et

al., 2007) for 2D mesh-connected multicomputers. The chapter also explains the system

model assumed in this thesis. This chapter gives a background that helps to understand

the following chapters.

2.1 Related Allocation strategies

This section explains some of the existing contiguous and noncontiguous allocation

strategies that have been suggested for 2D mesh-connected multicomputers.

2.1.1 Contiguous allocation strategies

There are many contiguous allocation strategies that have been suggested for 2D mesh-

connected multicomputers. Most of the contiguous allocation strategies have focused on

reducing fragmentation caused by contiguous allocation. High processor fragmentation

problem can impact the system performance (Zhu, 1992; Ababneh, et al., 2010). Below

we explains some of the most famous strategies.

www.manaraa.com

13

Two Dimensional Buddy Strategy (2DBS): The 2DBS allocation (Li and Cheng, 1991) is

applied to square meshes with a side length of the power two. The requested job is

allocated to sub-mesh that is also squared with a side length that is rounded up to the

nearest power of two. When a job requests a sub-mesh of size x × y, such that x ≤ y, the

2DBS allocates a sub-mesh of size s× , where = 2⌈log2 max(,)⌉. For example, if a job

requests 2×4 sub-mesh of processors, it is allocated a square sub-mesh of processors

with a size 4×4, that result in 8 idle processors and an internal fragmentation of 50% as

shown in Figure 2.1. The 2DBS suffers from internal and external processor

fragmentation due to the side length condition and lacks complete sub-mesh recognition

capability. The 2DBS can only be used to square meshes (Zhu, 1992; Lo, et al., 1997;

Chang and Mohapatra, 1998).

www.manaraa.com

14

Frame Sliding (FS) Strategy: The frame sliding strategy (Chuang and Tzeng, 1994) is

used to solve the fragmentation problem occurs in 2DBS. The FS strategy applies to any

size of mesh system and any shape of a sub-mesh request which means that there is no

internal fragmentation. The FS strategy slides a frame of a requested sub-mesh through

a bit array that represents free and allocated processors to finds an available sub-mesh.

The FS strategy starts to examine the first candidate (frame) at the lower leftmost free

processor and slides the candidate frame vertically or horizontally equivalent to width or

height of the requested sub-mesh, respectively. The searching process stops when an

available frame is found or when all candidate frames are exhausted. The FS suffers from

large external fragmentation and it cannot recognize all available sub-meshes, which

means that even if there is a free sub-mesh the FS fails to allocate it because of the jumps

by width and height of the job's request (Zhu, 1992; Lo, et al., 1997; Chang and

Mohapatra, 1998). Figure 2.2 gives an example of such situation. Figure 2.2 shows a 6 ×

5 mesh system and an incoming request of 3 × 2 sub-mesh.

www.manaraa.com

15

First Fit (FF) and Best Fit (BF) Strategies: The FF and BF strategies (Zhu, 1992) use a

bit array for scanning of free processors. Both FF and BF strategies solve the problem of

losing an existing possible allocation occurred in previous strategies. In FF, the first found

sub-mesh with a sufficient number of processors is allocated, whereas in BF, a sub-mesh

with the largest number of busy neighbors (processors) and smallest number of free

neighbors (processors) is allocated. Both FF and BF strategies can discover all large-

enough free sub-meshes but haven’t complete sub-mesh recognition capability because

they do not consider switching the requested shape orientation. The BF strategy attempts

to reduce the probability of fragmentation. Both FF and BF strategies suffer from

significant external fragmentation (Zhu, 1992; Lo, et al., 1997). Figure 2.3 shows the

allocation of a job request for a 2×2 sub-mesh using FF and BF.

www.manaraa.com

16

2.1.2 Noncontiguous Allocation Strategies

Little improvement in the performance can be gained by the refinements of contiguous

allocation strategies (Lo, et al., 1997; Chang and Mohapatra, 1998). The communication

latency becomes less sensitive to the distance between the communicating processors

because of the wormhole routing (Ni and McKinley, 1993) and faster switching technique,

and this makes allocating a job to noncontiguous processors is feasible(Lo, et al., 1997;

Chang and Mohapatra, 1998; Bani-Mohammad, et al., 2007). Noncontiguous allocation

permits a job to be executed if there are enough number of free processors in the mesh.

Many noncontiguous allocation strategies have been suggested for 2D mesh

multicomputers (Lo, et al., 1997; Chang and Mohapatra, 1998; Bani-Mohammad, et al.,

2007). Some of the most famous noncontiguous allocation strategies that have been

considered in the thesis are explained below.

www.manaraa.com

17

Random allocation strategy: This strategy (Lo, et al., 1997) is a simple strategy in which

a job request for a number of processors is satisfied with a randomly chosen number of

processors. It removes both internal and external fragmentations because an exact

number of processors are allocated to the job. There is no contiguity enforced by this

strategy which results in much communication interference between jobs (Lo, et al, 1997).

Paging strategy: In paging strategy (Lo, et al., 1997), the whole mesh is divided into

square pages with equal side lengths of 2 _ ; where _ is a positive integer. The page is

the main unit of allocation. The term indexing scheme means in which order are the pages

scanned. Several indexing schemes are used for indexing the pages (row-major, shuffled

row-major, snake-like, and shuffled snake-like indexing) as shown in Figure 2.4. The

Paging algorithm is represented as Pagingindexing_scheme (page_size). For a job

request for k processors is allocated ⌈ ⁄22page_size⌉ pages. This is done by scanning

the free page list according to the given indexing scheme. Indexing schemes maintained

some degree of contiguity among allocated pages. The contiguity can be increased by

increasing the page size but increasing the page size results in much internal

fragmentation. For paging with page size equal zero, both internal and external

fragmentations are removed and for page size greater than or equal to one, internal

fragmentation is occurred (Lo, et al., 1997). This strategy is good, but it is still cannot

allocate a job contiguously although a one sufficient sub-mesh is free in the mesh system

and such situation is shown in Figure 2.4. Figure 2.4 shows an example of Paging row-

major (0).

www.manaraa.com

18

www.manaraa.com

19

Multiple Buddy Strategy (MBS): The MBS (Lo, et al., 1997) is an extension of the 2D

buddy strategy (2DBS). MBS removes both internal and external fragmentation problems

that occur in 2DBS by allowing individual contiguous blocks to be allocated to a job

noncontiguously. The whole mesh in this strategy is divided into distinct square sub-

meshes with side lengths equal to the powers of two at the initialization stage. At factoring

stage, the requested number of processors for an incoming job is factorized into a base

of four representation of ∑log04 p di × (2i × 2i), where 0 ≤ di ≤ 3. Then, the job request is

allocated depending on the factorized number where di free processor blocks of size

equal to2i × 2i are required for every term i. When the required block is unavailable then

the MBS searches for a larger block and divides it into buddies and stop when it produces

blocks of the required size. If it fails then the requested block is broken into four requests

for smaller blocks and the searching process is repeated again (Lo, et al., 1997, Ababneh,

et al., 2010). The restriction to base four blocks of allocation results in failure in allocating

a free sub-mesh contiguously to a requested job. Figure 2.6 shows an example of MBS

allocation.

www.manaraa.com

21

Greedy Available Busy List (GABL): In GABL strategy (Bani-Mohammad, et al., 2007,

AlHarafsheh, 2016, Alsardia, 2017), upon the selection of parallel job for allocation, a sub-

mesh appropriate for the whole job is searched for. If requested sub-mesh exists then it

is allocated to the job and the allocation happens but if it does not exist then the largest

free sub-mesh that can fit inside the request job size is allocated. After that, the largest

free sub-mesh with side lengths that do not exceed the corresponding side lengths of the

previously allocated sub-mesh is searched for, and this allocation must not result in

allocating more processors than the desired size

www.manaraa.com

21

. The strategy repeats the last step till the desired number of processors is allocated to

the job. All the allocated sub-meshes are stored in a busy list. Every element in the busy

list includes the id of the job that the sub-mesh is allocated to. The busy list is updated

after each allocation and de-allocation operation. An efficient approach proposed in (Chiu

and Chen, 1999) are used in GABL to detect free sub-meshes with low allocation

overhead. The goal of the GABL strategy is to maintain a high degree of contiguity among

processors allocated to the job and this decreases the number of sub-meshes allocated

to a job and minimizes the distance traversed by messages, which then reduces message

contention inside the network (Bani-Mohammad, et al., 2007). However, GABL still may

allocate sub-meshes that are far apart from each other.

Figure 2.8 shows an example of how GABL allocates a job request. Suppose a job

request of size 4×3 arrives to the system. GABL always tries to allocate any job request

contiguously. GABL searches for a free sub-mesh of the desired size (4×3) in the mesh.

GABL failed to find a contiguous sub-mesh of size 4×3. GABL then starts searching again

by subtracting one from the maximum side length of the desired sub-mesh, and this step

is repeated till it finds a suitable free sub-mesh. In this case, a 2×3 available sub-mesh of

processors with the coordinates (6,0,7,2) is found, where the first two coordinates specify

the lower left corner of the sub-mesh and the last two coordinates specify the upper right

corner of the sub-mesh. Then it continues to allocate another sub-mesh (3,0,5,1) by

rotating the current request to be 3×2 provided that the number of allocated processors

does not exceed the original request.

www.manaraa.com

22

www.manaraa.com

23

2.2 Switching Method

The switching method is responsible for specifying the way to transmit a message as they

travel across intermediate nodes. Switching is used at the router and composed of the

receipt of a message, specifying the suitable output node, and then transmitting the

message across this node (Ni and McKinley, 1993; Lo, et al., 1997; Bani-Mohammad,

2008, Alsardia, 2017). The switching technique has a significant impact on the

communication latency in the direct network multicomputer systems. This section briefly

describes the

three most important switching techniques for multicomputer networks: Store-and-

forward (Grama, et al., 2003), Virtual cut-through (Drewes, 1996), and Wormhole

switching (Ni and McKinley, 1993; Mohapatra, 1998).

Store-and-forward switching: In store-and-forward switching, the message is partitioned

into fixed-length packets in which those packets are routed from source to destination.

Each packet includes a header that hold sits destination address. Each intermediate node

keeps the entire packet before forwarding it to the next node in its path to the destination

node. The store-and-forward switching has two main disadvantages: a large buffer space

is needed to hold the whole packets at each intermediate node and the time to transmit

a packet from source node to destination node is proportional to the distance between

those nodes (Ni and McKinley, 1993; Mohapatra, 1998).

www.manaraa.com

24

Virtual cut-through switching: Virtual cut-through (Drewes, 1996) has been proposed as

an improvement for the store-and-forward switching so as to reduce the time spent in

transmitting data and to reduce the space overhead for storing the whole packet at each

intermediate node. In virtual cut-through switching, the header included in the packet

which includes routing information is checked upon coming at an intermediate node. If

the next wanted channel is busy then the packet is entirely stored at the intermediate

node; otherwise, it is transmitted to the next node without buffering. This reduces the

effect of the distance between the communicating nodes on the communication latency.

Each node must provide a very large buffer space for all blocked packets passing across

it because multiple packets may become blocked at the same time. The requirement of

high buffer space results in an increase in the implementation cost (Ni and McKinley,

1993; Mohapatra, 1998).

Wormhole switching: The Wormhole switching (Duato, et al., 1997) is suggested to solve

the needed for large buffer spaces and to reduce the sensitivity of the communication

latency to the distance between the communication nodes that occur in virtual cut-through

switching. In wormhole switching, a packet is partitioned into a sequence of fixed-size

units, and those units called flits (flow control unit), which is the smallest unit of data

transmission. The header flit controls the route by using the contained routing information

www.manaraa.com

25

and start establishing the path across the network and the remaining data flits

contiguously follow the header over the same path in a pipelined fashion. If the header flit

blocked because of the resource contention then all the remaining data flits blocked and

keeping all allocated links and buffers at the intermediate nodes occupied and at each

intermediate node, there is only one flit. This blocking prevents other packets from using

these channels, which leads to a deadlock; packets wait for each other in a cycle without

being able to move forward anymore. A critical issue in wormhole switching is deadlock

prevention. Deadlock prevention can be achieved using a suitable choice for routing

function (Ni and McKinley, 1993; Mohapatra, 1998).

Because of the pipelines during transmission in the wormhole routing, the wormhole

routing can perform well even in high-diameter networks, such the mesh (Min, 2003). The

iWARP (Peterson, et al., 1991) and the MIT J-machine (Noakes, et al., 1993)

experimental machines have used wormhole switching. The Intel Paragon (Intel

Corporation, 1991), the IBM blueGene/L (Blumrich, et al., 2003), and the Cray XT3 (Cray,

2005) commercial machines have used wormhole switching. In this thesis, wormhole

switching has been used when examining the performance of the allocation strategies.

The Wormhole switching has been used since it has been used in the previous allocation

strategies (Lo, et al., 1997; Mache, et al., 1997; Bani-Mohammad, et al., 2007; Ababneh,

et al., 2010).

www.manaraa.com

26

2.2.1 Routing Algorithm

An efficient algorithm to route a message from its source to its destination is critical to the

performance of parallel multicomputers that use direct networks. A direct network

topology must let any node to send packets to every other node. Mesh network, which is

a direct network, provides many physical paths for routing a packet among any two nodes.

A routing algorithm specifies the path that a packet takes from its source node to its

destination node. Routing algorithms can be classified into two types: deterministic and

adaptive. In deterministic routing, the unique path of the packet is completely specified by

the source and destination; intermediate nodes cannot redirect packets to any alternative

paths. In adaptive routing, the path of the packet is specified based on the current state

of the network such as the presences of failure or congestion and accordingly routes the

packet along alternative paths. Routing algorithm must handle deadlock if the dead lock

occurs; deadlock exists when no packet can reach its destination due to the busy

channels and buffers (Ni and McKinley, 1993; Mohapatra, 1998; Grama, et al., 2003).

www.manaraa.com

27

Dimension-order routing is an example of deterministic routing technique where the sent

packet is routed in one dimension at a time until it reaches the proper coordinate then it

routed in the next dimension towards the destination. The Dimension-order routing in two-

dimensional mesh networks is called routing, and it provides deadlock-free routing

because packets' path cannot form a deadlock cycle. The packet in routing goes along

the dimension (width of mesh) until it reaches the column of the destination node then it

goes along the dimension (height of mesh) until it reaches the destination node (Ni and

McKinley, 1993; Grama, et al., 2003). Figure 2.7 shows an example of routing among

source node and the destination node in an × 2D mesh-connected network. in this thesis,

the routing is used when studying the performance of the allocation strategies since it has

been used in the previous allocation strategies (Lo, et al., 1997; Bani-Mohammad, et al.,

2007;Ababneh, 2008;Ababneh, et al., 2010).

www.manaraa.com

28

2.2.2 Communication Patterns

The allocated processors to a parallel job often swapping messages together based on a

specified communication pattern (Lo, et al., 1997). An important parameter to measure

when evaluating noncontiguous allocation is message contention that comes from

swapping messages and its impact on overall system performance. In this thesis, eight

communication patterns have been considered to assess the performance of contiguous

and noncontiguous allocation algorithms. First, one-to-all communication pattern

(ProcSimity Manual, 1997, Lo, et al., 1997, AlHarafsheh, 2016), where a randomly chosen

processor transmits a message to each other processors allocated to the same job.

Second, random communication pattern (ProcSimity Manual, 1997), where a randomly

chosen processor transmits messages to randomly chosen destination within a group of

processors allocated to the same job. Third, all-to-all communication pattern (ProcSimity

Manual, 1997, Lo, et al., 1997, AlHarafsheh, 2016), where every processor transmits a

message to all other processors allocated to the same job. One-to-all, all-to-all and

random communication patterns have been used since they have been used in related

works (Suzaki, et al., 1996; Mache, et al.,1997; Lo, et al., 1997; Bani-Mohammad, et al.,

2007; Ababneh, 2008; Bani-Mohammad, et al., 2012; Bani-Mohammad and Ababneh,

2013, Alsardia, 2017) and because they are common, and they cover many

communications patterns used very frequently by highly parallel applications (Lo, et al.,

1997). Forth, near neighbor communication pattern (Bani-Mohammad and Ababneh,

2013, AlHarafsheh, 2016, Alsardia, 2017), where all the processor that are allocated to a

job are mapped to a virtual two-dimensional array. The size of the 2D array is equal to

the job’s allocation request. Each processor communicates with its virtual neighbors. Near

neighbor communication has been used since it is a common communication pattern for

simulations of physical phenomena such as heat and wave propagation (Bani-

Mohammad and Ababneh, 2013).

www.manaraa.com

29

Fifth, ring communication pattern (ProcSimity Manual, 1997; Lo, et al., 1997), where each

processor allocated to a job transmits a message to its successor in the linear array. The

successor of the last processor is the first one. Ring communication has been used since

it is

common in matrix computations. Sixth, all-to-one communication pattern (Grama, et al.,

2003), where all processors allocated to the same job transmits a message to a randomly

chosen processor. All-to-one has been used since it is used in several important parallel

algorithms including matrix-vector multiplication, shortest paths, and vector inner product.

Seventh, Fast Fourier Transform (FFT) communication pattern (James W. Cooley and

John W. Tukey, 1964; Lo, et al., 1997; Grama, et al., 2003; Chan, et al., 2008), which is

an efficient algorithm that is used to compute the Discrete Fourier Transform (DFT) and

its inverse. FFT consists of two transforms, the forward and a backward transform. The

forward operation transforms a function f(x) in real space X to a function F(k) in Fourier

space K while the backward transform does the reverse operation that transforms F(k) in

Fourier space K to f(x) in real space X. FFT has been used because it has been one of

the most popular and widely used numerical methods in many areas of scientific

computing, such as digital signal processing and solving linear partial differential

equations (Grama, et al.,2003).

www.manaraa.com

31

Eighth, Divide and Conquer Binomial Tree (DQBT)(Lo, et al., 1996; Lo, et al., 1997;

Valero-Garcia, et al., 1997; Grama, et al., 2003), where a message is transmit to all

processors allocated to the same job using a binomial broadcast tree. Because of these

restrictions associated with this pattern, the widths and lengths of jobs are truncated to

the nearest power of two. A DQBT algorithm has two stages. In the first stage, which is

called the division stage, the original problem is decomposed into n subproblems. Each

subproblem is recursively decomposed into n subproblems till the subproblems are small

enough to be solved by a processor without any further decomposition. During this stage,

each processor receives a message from its parent exactly once but may send messages

multiple times. In the second stage, which is called the combine stage, the result of

subproblems is combined to produce the final result, and during this stage, the message

traffic is in the opposite direction of that of the divide stage; each processor may receive

many times but sends exactly once. The patterns of data flow in the two stages (divide

and combine) are identical except for the direction. DQBT has been used because it is

used in many parallel applications (Valero-Garcia, et al., 1997), such as sorting algorithms

and matrix multiplication.

www.manaraa.com

31

2.3 Assumptions

In the subsequent chapters, wide simulation experiments will be presented to evaluate

the allocation strategies. In this study, we make the following assumptions, which have

been mostly used in the literature (Zhu, 1992; Babbar and Krueger, 1994; Suzaki, et al.,

1996; Mache, et al., 1997; Chang and Mohapatra, 1998; Yoo and Das, 2002; Seo, 2005;

Bani-Mohammad, et al., 2007; Ababneh, 2008; Bani-Mohammad, 2008; Ababneh, et al.,

2010, AlHarafsheh, 2016, Alsardia, 2017).

The inter-arrival times of jobs are independent and follow an exponential distribution.

Jobs are scheduled on a First-Come-First-Served (FCFS) basis, FCFS has been used

because its fairness.

The execution times of jobs depend on the time needed for flits to be routed through the

node, packet sizes, the number of message sent, message contention and distances

messages traverse.

The side lengths of the sub-meshes requested by jobs are generated separately and

follow a given probability distribution. Two distributions have been considered in this

thesis. The first is the uniform distribution over the range from 1 to the mesh side length

(). The second is the uniform-decreasing distribution. It is determined by four probability

1, 2, 3, and 4, and four integers 1, 2, 3 and 4, where the probability that the width (length)

of a request falls in the ranges [1, 1], [1+1, 2], [2+1, 3] and [3+1, 4] is 1, 2, 3, and 4,

respectively.

www.manaraa.com

32

The side lengths within a range are equally likely to happen. For the simulation

experiments in this research work, 1=0.4, 2=0.2, 3=0.2, 4=0.2, 1= /8, 2= /4, 3= /2, and 4=

. These two distributions have often been used in the literature (Zhu, 1992; Lo, et al, 1997;

Chang and Mohapatra, 1998; Chiu and Chen, 1999; Ababneh and Bani-Mohammad,

2003; Bani-Mohammad, et al., 2006, Bani-Mohammad, et al., 2010, Bani-Mohammad and

Ababneh, 2013).

Messages are sent inside the network using wormhole switching along with the XY

routing.

Messages are of a fixed length (i.e., a fixed number of flits). Furthermore, the number of

messages that are generated by a given job are correlated to the job size in the one-to-

all, all-to-all, ring, all-to-one, FFT, DQBT, and near-neighbor communication patterns,

since each job does exactly one iteration of the given communication pattern, and it is

only one message per job in the random communication pattern.

www.manaraa.com

33

Chapter Three

Simulation Tool and Simulation Results

3.1 Simulation Tool (ProcSimity Simulator)

This section provides a description of the used simulation tool which is called Procsimity

(Windisch, et al., 1995; ProcSimity Manual, 1997). Procsimity is used as a software tool

for research in the domain of processor allocation and job scheduling in multicomputers

and it was written in the C programming language. ProcSimity has been selected since it

is open source and includes a detailed simulation of important operations of

multicomputers networks. Moreover, the simulator has been widely validated in

(Windisch, et al., 1995; ProcSimity Manual, 1997).

The goal of using ProcSimity is to give an environment to analyze the performance of

processor allocation and job scheduling algorithms. In particular, ProcSimity is designed

in such a way to examine some of the processor allocation problems (i.e., fragmentation

and communication overhead problems). The k-ary n-cube and mesh interconnection

topologies with dimension-ordered routing are supported in this tool and the tool support

flow control technology. The architecture in ProcSimity has been designed to be a

network of processors interconnected via message routers at every node. Neighboring

nodes are connected by bidirectional communication links. Messages may be routed by

either wormhole switching or store-and-forward (Windisch, et al., 1995; ProcSimity

Manual, 1997).

www.manaraa.com

34

The target machine environment that is specified by ProcSimity includes the network

topology, routing, and flow control mechanisms, and it provides the users with libraries of

predefined scheduling and allocation algorithms. Also, allocation algorithms and

scheduling algorithms and even a new communication pattern can be added into

ProcSimity tool by any user. Procsimity involves specification of the simulation

experiments; it supports stochastic job streams and communication patterns from actual

parallel applications. Detailed simulation of message-passing overhead is set by the user

at the flit level (Windisch, et al., 1995; ProcSimity Manual, 1997).

www.manaraa.com

35

3.2 Simulation Results

Wide simulation experiments have been conducted under several communication

patterns to compare the performance of the of the existing most famous allocation

strategies: First Fit (FF)(Zhu, 1992), Best Fit (BF) (Zhu, 1992), Paging (Lo, et al., 1997),

MBS (Lo, et al., 1997) and GABL (Bani-Mohammad, et al., 2007). The performance of

the contiguous FF and BF allocation strategies have been chosen in this comparison

because they have been shown an average performance in comparison with other

allocation strategies in its class (Lo, et al., 1997). The Paging and MBS allocation

strategies have been chosen because they have been shown to perform well in (Lo, et

al., 1997), and also GABL has been shown to perform well in (Bani-Mohammad, et al.,

2007; Bani-Mohammad, et al., 2010; Bani-Mohammad, et al., 2012). The simulation tool

employed is ProcSimity that has been used for processor allocation and job scheduling

in mesh-connected multicomputers (Windisch, et al., 1995; ProcSimity Manual, 1997).

The target mesh system in this research is a 2D square mesh with a side length . Jobs

are assumed to have exponential inter-arrival time. The load of the system is defined as

the inverse of mean inter-arrival time of jobs. The jobs in the system are served based on

a First-Come-First-Served (FCFS) scheduling policy. The purpose of this research work

is to evaluate and compare the performance of the allocation strategies base on FCFS

scheduling

www.manaraa.com

36

. The job execution time is the time needed by a job for completion minus the time of the

allocation of a job and job starts the execution. Job execution time depends on the time

required for flits to be routed across the nodes, packet sizes, the number of messages to

be sent, the message contention inside the network and the distances that the messages

traverse (Bani-Mohammad, 2008). The side lengths of each sub-mesh requested by jobs

are generated independently and follow a given probability distribution, and two

distributions have been considered in this thesis. The first one that is the uniform

distribution over the range from 1 to the mesh side length (). The second one is the

uniform-decreasing distribution. It is determined by four probability 1, 2, 3, and 4, and four

integers 1, 2, 3 and 4, where the probability that the width (length) of a request falls in the

ranges [1, 1], [1+1, 2], [2+1, 3] and [3+1, 4] is 1, 2, 3, and 4, respectively.

The side lengths within a range are equally likely to happen. For the simulation

experiments in this research work, =16, 1=0.4, 2=0.2, 3=0.2, 4=0.2, 1= /8, 2= /4, 3= /2,

and 4= . These distributions have been selected because they have been used in the

literature (Zhu, 1992; Lo, et al., 1997; Chang and Mohapatra, 1998; Chiu and Chen, 1999;

Ababneh and Bani-Mohammad, 2003; Bani-Mohammad, et al., 2006; Bani-Mohammad,

et al., 2010, Bani-Mohammad and Ababneh, 2013). The interconnection network uses

wormhole routing and XY routing (Ni and McKinley, 1993; Mohapatra, 1998). Flits are

assumed to take one-time unit to move between two adjacent nodes, and ts time units to

be routed across a node. Plen represents packet sizes. As mentioned previously in

Chapter 2, Section 2.4, the allocated processors to a parallel job often exchange

messages together based on a given communication pattern (Lo, et al., 1997). In this

thesis, eight communication patterns have been considered to evaluate the performance

of contiguous

www.manaraa.com

37

and noncontiguous allocation algorithms. They are one-to-all communication pattern

(ProcSimity Manual, 1997, Lo, et al., 1997), random communication pattern (ProcSimity

Manual, 1997), all-to-all communication pattern (ProcSimity Manual, 1997, Lo, et al.,

1997), near neighbor communication pattern (Bani-Mohammad and Ababneh, 2013), ring

communication pattern (ProcSimity Manual, 1997; Lo, et al., 1997), all-to-one

communication pattern (Grama, et al., 2003), Fast Fourier Transform (FFT)

communication pattern (James W. Cooley and John W. Tukey, 1964; Lo, et al.,

1997;Grama, et al.,2003; Chan, et al., 2008), Divide and Conquer Binomial Tree

(DQBT)(Lo, et al., 1996 ; Lo, et al., 1997; Valero-Garcia, et al.,1997; Grama, et al.,2003).

The performance figures presented in the following sections in this chapter adopt the

following parameters: the mesh size is a 16×16, ts= 3 time units, Plen= 8 flits. Parameters

are explained in Table 3.1, it is worth noting that most of the values of these parameters

have been recommended in (ProcSimity Manual, 1997) and have been adopted in the

literature (Zhu, 1992; Babbar and Krueger, 1994; Lo, et al., 1997; Bani-Mohammad, et

al., 2010).

www.manaraa.com

38

Table 3. 1: The System Parameters used in the Simulation Experiments.

Simulation Parameter Value

Dimensions of the Mesh 16×16

Packet Length 8 flits

Flow Control Mechanism Wormhole Routing

Routing Delay 3 time units

Router Type Mesh XY Routing

Allocation Strategy FF, BF, GABL, MBS, and Paging(0)

Scheduling Strategy FCFS

Job Size Distribution Uniform: Job widths and lengths are

 uniformly distributed over the range from 1

 to the mesh side lengths.

 Uniform Decreasing: Represents the case

 where most jobs are small relative to the

 size of the system.

Inter-arrival Time Exponential with different values for mean.

 The values are determined through

www.manaraa.com

39

 experimentation with the simulator, ranged

 from lower values to higher values.

Mean Time between Sends 0.0

Communication Pattern One-to-all, Random, All-to-all, All-to-one,

 Ring, FFT, DQBT and Near Neighbor.

Messages per job Messages per job are correlated to the job

 size, since each job does exactly one

 iteration of the given communication

 pattern, except for Random communication

 pattern, where the number of messages per

 job is only one.

Number of Runs The number of runs should be enough so

 that the confidence level is 95% and the

 relative errors are below 5% of the means.

 The number of runs ranged from dozens to

 hundreds.

Number of Jobs per Run 1000

www.manaraa.com

41

Each simulation run consists of 1000 completed jobs. Simulation experiments are

repeated for independent runs until the confidence level reaches 95%, and the relative

errors do not exceed 5% (note: ProcSimity simulator count the percentage of error for

each run by itself).

The main performance parameters used are mean system utilization and the average

turnaround time of jobs. The turnaround time of a job is the time that the job spends in

the system from arrival to departure while the system utilization is the percentage of

processors that are utilized over a given period of time (Bani-Mohammad, 2008). The

most important independent variable in the simulation is the system load. System load is

defined as the inverse of the mean inter-arrival time of jobs and its range of values from

low to heavy loads, and it has been determined through experimentation with the

simulator allowing each allocation strategy to reach its upper limits of utilization (Bani-

Mohammad, 2008). In the figures that are presented below, the x-axis represents the

system load while the y-axis represents the results of the performance metric of interest.

3.1 Turnaround Time

In Figures 3.1 and 3.2, the average turnaround times are plotted against the system load

for the near neighbor communication pattern. The performance of contiguous allocation

strategies (FF and BF) substantially better than all noncontiguous allocation strategies

(Paging, MBS, and GABL). This is because the allocated processors for jobs are

contiguous and form rectangular shapes, which means that there is no interference

between messages of different jobs and in near neighbor communication pattern, each

node allocated to a job communicates only with its neighbors (up, down, right, left), which

means that there is no any message contention between messages of this job, and this

results in reducing the overall communication overhead and hence improves the system

performance. The

www.manaraa.com

41

performance of FF is very close to that of BF. Also, the performance of Paging(0) is very

close to that of MBS, because in near neighbor communication pattern, each node

allocated to a job communicates with its neighbors (up, down, right, left) that are allocated

to the same job and those strategies maintain a high degree of contiguity between the

allocated processors for a job and the allocated sub-meshes form rectangular shapes.

The GABL noncontiguous allocation strategy performs better than the other

noncontiguous allocation strategies (Paging and MBS). This is because GABL combines

the desirable features of both contiguous and noncontiguous allocation; it allocates sub-

meshes in a rectangular form and tries to maintain a high degree of contiguity between

the processors in the allocated sub-meshes, which means that the distances between

communicating nodes are relatively low, where the distances have significant impact on

message latency when messages are short (in this research work, the length of packets

is 8 flits). If the distances traversed by messages are short then they are less likely to

collide with other messages, which in turn decreases the communication overhead.

Consequently, the turnaround time is lower.

For example, in Figure 3.1, the average turnaround times of FF and BF are 0.2%, 0.59%

and 0.2% of that of Paging (0), GABL, MBS, respectively, when the system load is 0.01

jobs/time unit. In Figure 3.2, the same relative performance can be seen when the uniform

decreasing distribution is used, but the differences in the relative performance are less

severe.

www.manaraa.com

42

www.manaraa.com

43

In Figures 3.3, the average turnaround times of jobs are plotted against the system load

for the one-to-all communication pattern. The results reveal that in most cases, the

performance of noncontiguous allocation strategies (Paging(0), MBS, GABL) is relatively

the same and they perform better than both FF and BF contiguous allocation strategies

for both job distributions considered in this research work. This is due to the elimination

of both internal and external fragmentation in noncontiguous allocation strategies

(Paging(0), MBS, GABL) that results in better system utilization and hence improves the

system performance with regard to jobs turnaround time. The improvement of system

utilization outbalanced the impact of the interference between messages of different jobs

encountered in noncontiguous allocation. Also, the results reveal that the performance of

FF is very close to that of BF. For example, the average turnaround times of GABL are

58%, 58%, 97% and 99% of that of FF, BF, MBS, and Paging(0), respectively, when the

system load is 0.001 jobs/time unit.

In Figure 3.4, when the uniform decreasing distribution is used, the average turnaround

times of all noncontiguous and contiguous allocation strategies are improved, but the

relative performance remains almost the same as when the uniform distribution is used.

The increased probability of small jobs to be allocated is the cause for this improvement

in turnaround times. For example, the average turnaround times of GABL are 53%, 53%,

99% and 99% of that of FF, BF, MBS, and Paging, respectively, when the system load is

0.0054 jobs/time unit.

www.manaraa.com

44

www.manaraa.com

45

In Figures 3.5 and 3.6, the average turnaround times are plotted against the system load

for the random communication pattern. In Figure 3.5, the results reveal that in most cases,

the performance of noncontiguous strategies (Paging(0), MBS, GABL) is relatively the

same and they all better than both the FF and BF contiguous allocation strategies for

uniform job distributions considered in this thesis. Also, the results reveal that the

performance of FF is very close to that of BF. For example, the average turnaround times

of GABL are 60%, 61%, 96% and 96% of that of FF, BF, MBS, and Paging(0),

respectively, when the system load is 0.091 jobs/time unit. Figure 3.6, shows a slight

relative performance improvement when the uniform decreasing distribution is used. This

is due to the increased probability of small jobs (relative to mesh size) when using this

distribution. For example, the average turnaround times of MBS are 57%, 57%, 98% and

96% of that of FF, BF, Paging(0), and GABL, respectively, when the system load is 0.29

jobs/time unit.

The random communication pattern can only give a glance about the ability of the

noncontiguous allocation strategies to mitigate the message contention. However, the

contention generated when using the random communication pattern is not sufficient to

recognize between the allocation strategies. This is because in random communication

pattern each job sent only one message from a randomly selected source node to

randomly selected destination node.

www.manaraa.com

46

www.manaraa.com

47

In Figures 3.7 and 3.8, the average turnaround times of jobs are plotted against the

system load for the all-to-all communication pattern. The results reveal that FF and BF

contiguous allocation strategies substantially better than the MBS noncontiguous

allocation for uniform side lengths distribution, and FF and BF performs better than MBS

for uniform decreasing distribution. This refers to the much massage contention that

exists in all-to-all communication pattern which considered as the weak point of the

noncontiguous allocation strategies (Suzaki, et al., 1996), where the number of messages

per job increases dramatically as the job size increases. The delay would increase when

the message contention increases and this, in turn, defeat the gain of the improved

system utilization; and consequently, degrades the system performance with regard to

jobs turnaround time (Min and Mutka, 1994; Mache and Lo, 1997). This is what happened

with MBS. In MBS, the allocated sub-mesh is restricted to a base 4 square blocks, which

means that it may fail to allocate a requested sub-mesh contiguously even if there is a

one exist, and may divide a sub-mesh request without any need to do that and allocate

the parts far apart of each other, especially for large jobs, and this can seriously increase

the message contention.

The results reveal that GABL produces the best results in all cases. This is because GABL

has been designed for achieving a high level of contiguity, and this is done by giving

priority to allocating the largest possible free sub-meshes while avoiding external

processor fragmentation. Also, Paging(0) is better than MBS, and this is because the

distances between the allocated processors in Paging(0)is less than those in MBS, which

decreases the probability of the interference among job's messages, and that decreases

the contention and hence improves the system performance with regard to average

turnaround time of jobs. Also, the results reveal that the performance of FF is very close

to that of BF.

For example, in Figure 3.7, the average turnaround times of GABL are 74%, 75%, 83%

and 42% of that of FF, BF, Paging(0), and MBS, respectively, when the system load is

(0.00009) jobs/time unit.

www.manaraa.com

48

www.manaraa.com

49

In Figures 3.9 and 3.10, the average turnaround times are plotted against the system load

for the FFT communication pattern. The results in these figures reveal that FF and BF

contiguous allocation strategies dramatically better than all noncontiguous allocation

strategies (MBS, Paging(0), and GABL). This is because the allocated processors for

jobs are contiguous and form rectangular shapes, which means that there is no

interference between messages of different jobs and in FFT communication pattern, the

allocated number of processors for a job is divided by two, resulting in two halves, each

processor in the first half communicate with its corresponding processor in the second

half. This stage is repeated until one processor remains, which means that there is a less

message contention among the messages of the same job, and this results in reducing

the overall communication overhead and hence improves the system performance with

regard to jobs turnaround time. The performance of FF is very close to that of BF. Also,

the figures reveal that the MBS noncontiguous strategy perform better than the other

noncontiguous allocation strategies (Paging(0) and GABL) and it performs well for both

job size distributions considered in this research work. This is because the side lengths

of the job request are truncated to a power of two that favors MBS and power of two sizes

are suitable to the request partitioning process used in MBS. Jobs are allocated to a small

number of square sub-meshes, and these sub-meshes are often neighbors due to the

method used for maintaining and allocating free blocks in MBS allocation strategy. Also,

the results reveal that Paging(0) and GABL perform poorly in this communication pattern

because they can allocate processors that are relatively far apart, which can increase the

distance traversed by messages and hence increases the message contention, which in

turn results in degrading the system performance with regard to jobs turnaround time. In

Figure 3.9, for example, the average turnaround times of FF and BF are 38%, 21%, and

15% of that of MBS, Paging(0), and GABL, respectively, when the job arrival rate is 0.013

jobs/time unit.

www.manaraa.com

51

www.manaraa.com

51

In Figures 3.11 and 3.12, the average turnaround times are plotted against the system

load for the DQBT communication patterns. The results in these figures reveal that FF,

BF, and MBS allocation strategies perform well for both job size distributions and

dramatically better than the other noncontiguous allocation strategies (Paging(0) and

GABL). FF and BF perform well because the allocated processors for jobs are contiguous

and form rectangular shapes, which means that there is no interference between

messages of different jobs and in DQBT communication pattern, the allocated number of

processors for a job is divided by two, resulting in two halves. This stage is repeated until

one processor remains. In the combine stage, one processor in the first half communicate

with one processor in the second half, which means that there is a less message

contention between the messages of the same job, and this results in reducing the overall

communication overhead and hence improves the system performance with regard to

jobs turnaround time.MBS performs well because the side lengths of the requested sub-

mesh are truncated to a power of two that favors MBS, and power of two sizes are suitable

to the request partitioning process that it is used in MBS. Jobs are allocated to a small

number of square sub-meshes, and these sub-meshes are often neighbors due to the

method used for maintaining and allocating free blocks in MBS allocation strategy.

Also, the results reveal that Paging(0) and GABL perform poorly in this communication

pattern because they can allocate processors that are relatively far apart, which can

increase distances traversed by messages and hence message contention is increased,

and this in turn results in degrading in the system performance with regard to jobs

turnaround time. In Figures 3.11, for example, the average turnaround times of FF and

BF are 96%, 48%, and 31% of those of MBS, Paging(0), and GABL, respectively, when

the job arrival rate is 0.046 jobs/time unit.

www.manaraa.com

52

www.manaraa.com

53

In Figures 3.13 and 3.14, the average turnaround times of jobs are plotted against the

system load for the Ring communication pattern. The results in these figures reveal that

noncontiguous allocation strategies (MBS, Paging(0), and GABL) perform better than

contiguous allocation strategies (FF and BF) for both job size distributions. This is

because although there is an increase in the contention but still remains relatively low

due to the fact that some degree of contiguity is maintained, and this allows the ring

communication to still be executed efficiently and in this communication pattern, each

processor allocated to a job sends a packet only to its successor which means that the

distances traversed by messages are short and number of massages is less so they are

less likely to collide with other messages. This results in reducing the communication

overhead and hence the turnaround time is lower. In figures 3.13, the performance of

noncontiguous strategies (Paging(0), MBS, GABL) is relatively the same, and the

performance of FF is very close to that of BF. In figures 3.14, the performance of

Paging(0) allocation strategy is better than the other noncontiguous strategies (MBS,

GABL) and the performance of FF is very close to that of BF. In figure 3.13, for example,

the average turnaround times of Paging(0) are 60%, 60%, 99%, and 92% of that of FF,

BF, MBS, and GABL, respectively, when the job arrival rate is 0.046 jobs/time unit.

www.manaraa.com

54

www.manaraa.com

55

In Figures 3.15, the average turnaround times of jobs are plotted against the system load

for the All-to-One communication pattern. The results reveal that in most cases, the

performance of noncontiguous allocation strategies (Paging(0), MBS, GABL) is relatively

the same and they perform better than both FF and BF contiguous allocation strategies

for uniform job distributions considered in this thesis. This due to the elimination of both

internal and external fragmentation in noncontiguous allocation strategies (Paging(0),

MBS, GABL) that results in better system utilization and that can improve the system

performance with regard to jobs turnaround time. The improvement of system utilization

outbalanced the impact of the interference between messages of different jobs

encountered in noncontiguous allocation. Also, the results reveal that the performance of

FF is very close to that of BF. For example, in Figure 3.15, the average turnaround times

of Paging are 30%, 30%, 77% and 76% of those of FF, BF, MBS, and GABL, respectively,

when the job arrival rate is 0.001 jobs/time unit.

www.manaraa.com

56

In Figure 3.16, when the uniform decreasing distribution is used, the average turnaround

times of all noncontiguous and contiguous allocation strategies are improved, but the

relative performance remains almost the same as when the uniform distribution is used.

The increased probability of small jobs to be allocated is the reason for this improvement

in turnaround times. Furthermore, message contention decreased in noncontiguous

allocation strategies because, in the All-to-One communication pattern, the number of

messages for a job is correlated to the job size.

Note: this is the same explanation for the One-to-All, because All-to-One is the dual of

One-to-All communication; a dual of a communication is the opposite of the original

operation (Grama, et al., 2003).

www.manaraa.com

57

www.manaraa.com

58

3.3 System Utilization

Figures 3.33 - 3.34 show the mean system utilization of the considered allocation

strategies (FF, BF, Paging(0), MBS, and GABL) using the eight communication patterns

and two job size distributions. The values of the load were obtained for heavy system

loads, and the heavy loads cause the waiting queue to be filled very early which let the

allocation strategies to reach the upper limit of the system utilization. The results reveal

that noncontiguous allocation strategies dramatically better than contiguous allocation

strategies with regard to mean system utilization. This is because contiguous allocation

results in high fragmentation because the allocation of a requested sub-mesh needs

contiguity between its processors and the sub-mesh of the allocated processors must

have the same topology as multicomputer; these conditions reduce the chance of

successful allocation and consequently reduce the mean system utilization. The

contiguous FF and BF strategies cannot exceed 71% and 63% utilization for uniform and

uniform decreasing job size distributions, respectively. The results for uniform decreasing

job size distribution is less good than those of uniform job size distribution, and this

because it represents the case where most jobs are small relative to the size of the mesh

system and hence decreases the

www.manaraa.com

59

number of allocated processors for the job requests, which in turn affects negatively on

system performance with regard to system utilization. The noncontiguous allocation

strategies (Paging(0), MBS, GABL) achieve a mean system utilization of 92% for uniform

and uniform decreasing job size distributions, respectively. The performance of the

noncontiguous allocation strategies considered in this research is very close because

they have the same ability to eliminate internal and external processor fragmentation and

always the allocation succeed if there are enough free processors.

Figures 3.19 - 3.34 in the appendix, show the mean system utilization of the considered

allocation strategies (FF, BF, Paging(0), MBS, and GABL) using the eight communication

patterns and two job size distributions. The values of the load ranged from moderate to

heavy loads. The results reveal that noncontiguous allocation strategies dramatically

better than contiguous allocation strategies with regard to mean system utilization

www.manaraa.com

61

www.manaraa.com

61

Chapter Four

Conclusion and Directions for future work

4.1 Conclusion

Many research studies have been investigated the processor allocation in

multicomputers, especially those based on mesh network (Li and Cheng, 1991; Zhu,

1992; Chuang and Tzeng, 1994; Lo, et al, 1997; Chang and Mohapatra, 1998; Ababneh,

2001; Bani-Mohammad, et al., 2007; Ababneh, 2008; Ababneh, et al., 2010; Bani-

Mohammad, et al., 2012). But to the best of our knowledge, there is no study that

considers the effect of the Near Neighbor, Ring, All to all, Divide and Conquer Binomial

Tree (DQBT), Fast Fourier Transform (FFT),One to All, All to One, and Random

communication patterns on the performance of contiguous and noncontiguous processor

allocation in multicomputers, especially when each job does exactly one iteration of the

given communication pattern. The communication pattern used by a program may have

a great impact on the performance of contiguous and noncontiguous processor allocation

in multicomputers (Bani-Mohammad, et al., 2013). In this thesis, the performance of the

most famous contiguous allocation strategies (First Fit, Best Fit) and most famous

noncontiguous allocation strategies (GABL, Paging, MBS) for 2D mesh multi-computers

is re-visited considering several important communication patterns, including one-to-all

(ProcSimity Manual, 1997), near neighbor (Bani-Mohammad and Ababneh, 2013),

random (ProcSimity Manual, 1997),

www.manaraa.com

62

all-to-all (ProcSimity Manual, 1997; Lo, et al., 1997), ring (ProcSimity Manual, 1997; Lo,

et al., 1997), Divide and Conquer Binomial Tree (DQBT)(Lo, et al., 1996 ; Lo, et al., 1997;

Valero-Garcia, et al.,1997; Grama, et al.,2003), Fast Fourier Transform (FFT) (James W.

Cooley and John W. Tukey, 1964; Lo, et al., 1997;Grama, et al.,2003; Chan, et al., 2008),

all-to-one (Grama, et al., 2003). Two distributions have been considered in this research

work, which they are the uniform and uniform-decreasing distributions. Wide simulation

experiments have been conducted to compare the performance of contiguous allocation

with that of noncontiguous allocation with regard to average turnaround time and mean

system utilization using the ProcSimity simulator.

The simulation results for average turnaround time have shown that in near neighbor,

FFT and DQBT communication patterns, the performance of contiguous allocation

strategies (FF and BF) dramatically better than all noncontiguous allocation strategies

(Paging(0), MBS and GABL) with regard to average turnaround; except for MBS in DQBT

communication pattern, where its performance is very close to that of FF and BF. These

results prove that the taken fact that said the noncontiguous allocation strategies always

dramatically better than contiguous allocation strategies with regard to average

turnaround time is not absolutely true. Also, the simulation results have shown that in

one-to-all, random, ring and all-to-one communication patterns, the performance of

noncontiguous allocation strategies (Paging(0), MBS and GABL) dramatically is better

than that of contiguous allocation strategies (FF and BF) with regard to average

turnaround time. For all-to-all communication pattern, the simulation results have shown

that the performance of contiguous allocation strategies (FF and BF) is better than that of

the MBS noncontiguous allocation strategy, but the performance of GABL and Paging(0)

is better than that of FF, BF, and MBS.

www.manaraa.com

63

The results for system utilization have shown that in all communication patterns that are

considered in this research work, the noncontiguous allocation strategies dramatically

better than the contiguous allocation strategies with regard to mean system utilization.

4.2 Directions for the Future Works

There are interesting issues that can be considered as an expansion of this research work

in the future. Some of these issues are briefly described below

It would be interesting to re-examine the performance of the allocation strategies with

other possible scheduling approaches, such as Out-of-Order (OO) (Ababneh, 2001),

Shortest-Service-Demand-First (SSD) (Krueger, et al., 1994), and Window-based job

scheduling (Ababneh and Bani-Mohammad, 2011)

It would be interesting to re-examine the performance of most famous allocation

strategies for other common multicomputer networks, such as the torus and hypercube

networks, considering several important communication patterns that were used in this

research work.

www.manaraa.com

64

References

Ababneh, I. (2001). Job scheduling and contiguous processor allocation for three-

dimensional mesh multicomputers. AMSE Advances in Modelling and Analysis, 6(4), pp.

43-58.

Ababneh, I. (2008). Availability-based noncontiguous processor allocation policies for 2D

mesh-connected multicomputers. Journal of Systems and Software, 81(7), pp. 1081-

1092.

Ababneh, I., Bani-Mohammad, S., and Hamdan, M. (2010). Comparative Performance

Evaluation of Non-Contiguous Allocation Algorithms in 2D Mesh-Connected

Multicomputers. Proceedings of the 10th IEEE International Conference on Computer and

Information Technology (CIT 2010), pp. 2933–2939. Washington, DC: IEEE Computer

Society.

Ababneh, I., and Bani-Mohammad, S. (2011). A new window-based job scheduling

scheme for 2D mesh multicomputers. Simulation Modelling Practice and Theory, 19(1),

pp. 482-493.

Adve, V., and Vernon, M. (1994). Performance analysis of mesh interconnection networks

with deterministic routing. IEEE Transactions on Parallel and Distributed Systems, 5(3),

pp. 225-246.

AlHarafsheh, R. (2016). Irregular Shape Strategy for Non-contiguous Sub-mesh

Allocation in 2D Mesh-Connected Multicomputers. Master thesis in Computer Science

from Al al-Bayt University.

www.manaraa.com

65

Alsardia, D. (2017). A Row Based Non-Contiguous Processor Allocation Strategy for 2D

Mesh-Connected Multicomputer. Master thesis in Computer Science from Al al-Bayt

University.

Athas, W.C., C.L. Seitz (1988). Multicomputers: message-passing concurrent computers,

IEEE Computer, 21(8), pp. 9–24.

Bailey, D.H., E. Barszcz, L. Dagum, and H.D. Simon (1994).“NAS Parallel Benchmark

Results 3-94,” Technical Report RNR-94-006, NASA Ames Research Center, Moffett

Field, Calif., Mar.

Babbar, D., and Krueger, P. (1994). A performance comparison of processor allocation

and job scheduling algorithms for mesh-connected multiprocessors. Proceedings of the

6th IEEE Symposium on Parallel and Distributed Processing, pp. 46-53. Dallas, TX.

Bani-Mohammad, S. (2008). Efficient Processor Allocation Strategies for Mesh-

Connected Multicomputers. PhD Thesis, Department of Computing Science, University

of Galsgow, Glasgow, U.K.

Bani-Mohammad, S., and Ababneh, I. (2009). Comparative evaluation of contiguous

allocation strategies on 3D mesh multicomputers. Journal of Systems and Software,

82,pp.307–318

Bani-Mohammad, S., and Ababneh, I. (2013). On the performance of non-contiguous

allocation for common communication patterns in 2D mesh-connected multicomputers.

Simulation Modelling Practice and Theory, 32, pp. 155-165.

Bani-Mohammad, S., Ababneh, I., and Yassen, M. (2012). Non-contiguous processor

allocation in the mesh-connected multicomputers using compaction. International

Conference on Computer Systems and Industrial Informatics, pp. 1-8. Sharjah.

www.manaraa.com

66

Bani-Mohammad, S., Ould-Khaoua, M., and Ababneh, I. (2007). An Efficient Non-

Contiguous Processor Allocation Strategy for 2D Mesh Connected Multicomputers.

Journal of Information Sciences, 177(14), pp. 2867-2883.

Blumrich, M., Chen, D., Coteus, P., Gara, A., Giampapa, M., Heidelberger, P., Singh, S.,

Steinmacher-Burow, B., Takken, Steinmacher-Burowmin T. and Vranas, P.

(2003).Design and Analysis of the BlueGene/L Torus Interconnection Network. IBM

Research Report RC23025, IBM Research Division. Thomas J. Watson Research

Center.

Chan, A., Balaji, P., Thakur, R., W. Gropp, E. Lusk (2008). Communication Analysis of

Parallel 3D FFT for Flat Cartesian Meshes on Large Blue Gene Systems, in: HiPC,

Bangalore, India.

Chang, C.-Y and Mohapatra, P. (1998). Performance improvement of allocation schemes

for mesh- connected computers. Journal of Parallel and Distributed Computing, 52(1), pp.

40-68.

Chiu, G.-M., and Chen, S.-K. (1999). An efficient submesh allocation scheme for two-

dimensional meshes with little overhead. IEEE Transactions on Parallel and Distributed

Systems, 10(5), pp. 471-486.

Chuang, P., and Tzeng, N. (1994). Allocating precise submesh in mesh-connected

systems.

IEEE Transaction on Parallel and Distributed Systems, 5(2), pp. 211-217.

www.manaraa.com

67

Cray. (2005). Cray XT3 Datasheet.

Drewes, C. (1996). Simulating Virtual Cut-through and Wormhole Routing in a Clustered

Torus. M.Sc. Thesis, Laboratory of Computer Architecture and Digital Techniques

(CARDIT), Faculty of Electrical Engineering, Delft University of Technology.

Duato, J., Yalamanchili, C., and Ni, L. (1997). Interconnection Networks: An Engineering

Approach (1st ed.). Los Alamitos, CA, USA: IEEE Computer Society Press.

Ferreira, A., velLejbman, G., and Song, S. (1994). Bus based parallel computers: A viable

way for massive parallelism. Proceedings of Parallel Architectures Languages Europe

(PARLE '94), Lecture Notes in Computer Science 817, pp. 553-564. Berlin, Heidelberg:

Springer Berlin Heidelberg.

Foster, I. (1995). Designing and building parallel programs: concepts and tools for parallel

software engineering. MA: Addison-Wesley.

Grama, A., Kumar, V., Gupta, A., and Karypis, G. (2003). Introduction to Parallel

Computing.

Rewood City, California: The Benjamin/Cummings publishing company, Inc.

Intel Corporation. (1991). A Touchstone DELTA system description.

www.manaraa.com

68

Intel Corporation. (1991). Paragon XP/S product overview. Beaverton, Oregon:

Supercomputer Systems Division.

James W. Cooley, John W. Tukey (1964). An algorithm for the machine calculation of

complex fourier series, Mathematics of Computation 19 (90), pp. 297–301.

Krueger, P., Lai, T., and Radiya, V. (1994). Job scheduling is more important than

processor allocation for hypercube computers. IEEE Transactions on Parallel and

Distributed Systems, 5(5), pp. 488-497.

Li, k., and Cheng, K. -H. (1991). A Two-Dimensional Buddy System for Dynamic

Resource Allocation in a Partitionable Mesh Connected System, Journal of Parallel and

Distributed Computing, 12(1), pp. 79-83.

Lo, V., S. Rajopadhye, J.A. Telle (1996). Parallel divide and conquer on meshes, IEEE

Transactions on Parallel and Distributed Systems, 7(10),pp. 1049–1057.

Lo, V., Windisch, K., Liu, W., and Nitzberg, B. (1997). Non-contiguous processor

allocation algorithms for mesh-connected multicomputers. IEEE Transactions on Parallel

and Distributed Systems, 8(7), pp. 712-726.

Mache, J., and Lo, V. (1997). The Effects of Dispersal on Message-Passing Contention

in Processor Allocation Strategies. Third Joint Conference on Information Sciences,

Sessions on Parallel and Distributed Processing, pp. 223-226.

www.manaraa.com

69

Mache, J., Lo, V., and Windisch, K. (1997). Minimizing Message-Passing Contention in

Fragmentation-Free Processor Allocation. Proceedings of the 10th International

Conference on Parallel and Distributed Computing Systems, pp. 120-124.

Min, D., and Mutka, M. (1994). A multipath contention model for analyzing job interactions

in 2-D mesh multicomputers. Proceedings of 8th International Parallel Processing

Symposium, pp. 744-751. Cancun.

Min, G. (2003). Performance Modelling and Analysis of Multicomputer Interconnection

Networks. Ph.D. Thesis, Department of Computing Science, University of Glasgow,

Glasgow, U.K.

Mohapatra, P. (1998). Wormhole Routing Techniques for Directly Connected

Multicomputer Systems. ACM Computing Surveys, 30(3), pp. 374-410.

Moore, S., and Lionel, M. (1996). The Effects of Network Contention on Processor

Allocation Strategies. In Proceedings of the 10th International Parallel Processing

Symposium, pp. 268-274.

Ni, L., and McKinley, P. (1993). A survey of wormhole routing techniques in direct

networks. IEEE Computer, 26(2), pp. 62-76.

Noakes, M., Dally, W. J., and Wallach, D. A. (1993). The J-machine multicomputer: an

architecture evaluation. Proceedings of the 20th International Symposium Computer

Architecture, pp. 224-235. New York, NY, USA: ACM.

www.manaraa.com

71

Peterson, C., Sutton, J., and Wiley, P. (1991). iWarp: a 100-MOPS, LIW microprocessor

for multicomputers. IEEE Micro, 11(3), pp. 26-29.

ProcSimity V4.3 User’s Manual, University of Oregon, 1997.

Seo, K.-H. (2005). Fragmentation-efficient node allocation algorithm in 2D mesh-

connected systems. Proceedings of the 8th International Symposium on Parallel

Architecture, Algorithms and Networks (ISPAN’05), pp. 318-323. Washington, DC, USA:

IEEE Computer Society Press.

Suzaki, K., Tanuma, H., Hirano, S., Ichisugi, Y., Connelly, C., and Tsukamoto, M. (1996).

Multi-tasking method on parallel computers which combines a contiguous and a non-

contiguous processor partitioning algorithm. Proceedings of the 3rd International

Workshop on Applied Parallel Computing, Industrial Computation and Optimization , pp.

641-650. London: Springer.

Valero-Garcia, M., A. Gonzalez, L.D. Cerio, D. Royo (1997).Divide-and-Conquer

Algorithms on Two-Dimensional Meshes, Technical Report No. UPC-DAC-1997-30,

Department of Computer Architecture, Polytechnique University of Catalunia,.

Wan, M., Moore, R., Kremenek, G., and Steube, K. (1996). A batch scheduler for the Intel

Paragon with a non-contiguous node allocation algorithm. Proceedings of the

Workshop on Job Scheduling Strategies for Parallel Processing, IPPS '96, pp. 48-64.

Berlin, Heidelberg: Springer Berlin Heidelberg.

www.manaraa.com

71

Windisch, K., Miller, J., and Lo, V. (1995). ProcSimity: an experimental tool for processor

allocation and scheduling in highly parallel systems. Proceedings of the 5th Symposium

on the Frontiers of Massively Parallel Computation (Frontiers'95), pp. 414-421.

Washington, DC, USA: IEEE Computer Society Press.

Yoo, B.-S., and Das, C.-R. (2001). Efficient Processor management schemes for mesh-

connected multicomputer. Elsevier Science B.V, parallel computing, 27(1) pp. 1057-1078.

Yoo, B.-S., and Das, C.-R. (2002). A Fast and Efficient Processor Allocation Scheme for

Mesh-Connected Multicomputers. IEEE Transactions on Parallel and Distributed

Systems, 51(1), pp. 46-60.

Zhu, Y. (1992). Efficient Processor Allocation Strategies for Mesh-Connected Parallel

Computers. Journal of Parallel and Distributed Computing, 16(4), pp. 328-337.

www.manaraa.com

72

 الملخَّص

تقييم أداء استراتيجيات التخصيص المتجاور وغير المتجاور بناء على أنماط االتصال المعروفة في

 ددات الحواسيبالنظام ثنائي األبعاد في متع

 للباحثة عرين فالح احمد العباس

 المشرف الرئيسي األستاذ الدكتور إسماعيل عبابنة المشرف المساعد األستاذ الدكتور سعد بني محمد

السابقة المختلفة في تخصيص المعالجات إلى أن استراتيجيات التخصيص غير المتجاور تتفوق بشكل كبير تشير الدراسات

على استراتيجيات التخصيص المتجاور من حيث متوسط استخدام النظام ومعدل مكوث المهام في النظام، بغض النظر

يث يمكن أن يكون لنمط االتصال المستخدم عن نمط االتصال المستخدم، ولكن هذا في الواقع ليس صحيحًا تمامًا، ح

تأثيراً كبيراً على أداء التخصيص المتجاور وغير المتجاور في متعددات الحواسيب الشبكية، خاصة عندما تقوم كل مهمة

بتكرار واحد لنمط االتصال المحدد. في هذه األطروحة، تمت إعادة النظر في أداء استراتيجيات التخصيص المعروفة في

دات الحواسيب الشبكية المتصلة بالشبكة ثنائية األبعاد مع مراعاة العديد من أنماط االتصال المهمة. وهي الجار متعد

وتحويل)DQBT(القريب والكل للكل والواحد إلى الكل والكل إلى واحد والدائري والتقسيم والتجميع ذو الحدين

كممثل First)Fit, Best Fitدام االستراتيجيات (والعشوائي كأنماط اتصال. تم استخ)FFT(فورييه السريع

كممثل الستراتيجيات للتخصيص غير)GABL, Paging, MBS(الستراتيجيات للتخصيص المتجاور واالستراتيجيات

المتجاورة كما تم استخدام توزيعين لحجم المهمة هما التوزيع الموحد والتوزيع المتناقص. أجريت تجارب محاكاة شاملة

نة أداء التخصيص المتجاور بالتخصيص غير المتجاور من حيث متوسط استخدام النظام ومعدل مكوث المهام في لمقار

 ProcSimity.النظام باستخدام المحاكي

www.manaraa.com

73

، أن أداء استراتيجيات التخصيص المتجاور DQBTو FFTكشفت نتائج المحاكاة في أنماط االتصال الجار القريب و

)FF,BF(يتفوق بشكل ك)بير على أداء جميع استراتيجيات التخصيص غير المتجاورPaging (0),)MBS,GABL من

 FFمن أداء MBS، حيث يقترب اداء ال DQBTفي نمط االتصال MBSحيث معدل مكوث المهام في النظام، باستثناء

ا على استراتيجيات تتفوق دائً تثبت هذه النتائج أن الحقيقة التي تقول بأن استراتيجيات التخصيص غير المتجاور BF.و

التخصيص المتجاور فيما يتعلق بمعدل مكوث المهام في النظام غير صحيحة تمامًا. كما بينت نتائج المحاكاة أنه في أنماط

 Paging (االتصال الواحد إلى الكل والعشوائي والدائري والكل إلى واحد، تتفوق استراتيجيات التخصيص غير المتجاور(

(0), MBS,GABL)بشكل كبير على استراتيجيات التخصيص المتجاورFF

),BF من حيث معدل مكوث المهام في النظام،وفيما يتعلق بنمط االتصال الكل للكل، بينت نتائج المحاكاة أن أداء

 GABLولكن MBSأفضل من استراتيجيات التخصيص غير المتجاور FF,BF(استراتيجيات التخصيص المتجاور(

 MBS.و BFو FFأفضل من Paging (0و)

كما تظهر نتائج المحاكاة، انه في جميع أنماط االتصاالت، تتفوق استراتيجيات التخصيص غير المتجاور بشكل كبير على

 استراتيجيات التخصيص المتجاور في ما يتعلق بمتوسط استخدام النظام.

www.manaraa.com

74

Appendix

www.manaraa.com

75

www.manaraa.com

76

www.manaraa.com

77

www.manaraa.com

78

www.manaraa.com

79

www.manaraa.com

81

www.manaraa.com

81

